
GDC:
The GNU D Compiler

Iain Bucław

@ibuclaw

DConf 2013

Iain Bucław (@ibuclaw) (slide 1) DConf 2013 1 / 59

Outline

1 History of Porting D Front End (DFE)

2 GDC Current Status

3 The Anatomy of a GCC Front End

4 GDC Extensions

5 Future Plans

Iain Bucław (@ibuclaw) (slide 2) DConf 2013 2 / 59

Outline

1 History of Porting D Front End (DFE)

2 GDC Current Status

3 The Anatomy of a GCC Front End

4 GDC Extensions

5 Future Plans

Iain Bucław (@ibuclaw) (slide 2) DConf 2013 2 / 59

Outline

1 History of Porting D Front End (DFE)

2 GDC Current Status

3 The Anatomy of a GCC Front End

4 GDC Extensions

5 Future Plans

Iain Bucław (@ibuclaw) (slide 2) DConf 2013 2 / 59

Outline

1 History of Porting D Front End (DFE)

2 GDC Current Status

3 The Anatomy of a GCC Front End

4 GDC Extensions

5 Future Plans

Iain Bucław (@ibuclaw) (slide 2) DConf 2013 2 / 59

Outline

1 History of Porting D Front End (DFE)

2 GDC Current Status

3 The Anatomy of a GCC Front End

4 GDC Extensions

5 Future Plans

Iain Bucław (@ibuclaw) (slide 2) DConf 2013 2 / 59

What is GCC?

Developed to be 100% free software.

Solid support for multiple language.

Ported to almost all architectures.

Iain Bucław (@ibuclaw) (slide 3) DConf 2013 3 / 59

What is GCC?

Developed to be 100% free software.

Solid support for multiple language.

Ported to almost all architectures.

Iain Bucław (@ibuclaw) (slide 3) DConf 2013 3 / 59

What is GCC?

Developed to be 100% free software.

Solid support for multiple language.

Ported to almost all architectures.

Iain Bucław (@ibuclaw) (slide 3) DConf 2013 3 / 59

That and because the Clang/LLVM compiler was not to appear
for another 5 years...

Iain Bucław (@ibuclaw) (slide 4) DConf 2013 4 / 59

A Short History of Porting the D Front End.

Iain Bucław (@ibuclaw) (slide 5) DConf 2013 5 / 59

History

January/2002:
Early discussions of wanting to port D to Linux began.

April/2002:
Walter Bright releases D Front End sources.

May/2002:
Birth of D.gnu Mailing List and BrightD Compiler Project.

June/2002:
OpenD Compiler Project announced.

Iain Bucław (@ibuclaw) (slide 6) DConf 2013 6 / 59

History

January/2002:
Early discussions of wanting to port D to Linux began.

April/2002:
Walter Bright releases D Front End sources.

May/2002:
Birth of D.gnu Mailing List and BrightD Compiler Project.

June/2002:
OpenD Compiler Project announced.

Iain Bucław (@ibuclaw) (slide 6) DConf 2013 6 / 59

History

January/2002:
Early discussions of wanting to port D to Linux began.

April/2002:
Walter Bright releases D Front End sources.

May/2002:
Birth of D.gnu Mailing List and BrightD Compiler Project.

June/2002:
OpenD Compiler Project announced.

Iain Bucław (@ibuclaw) (slide 6) DConf 2013 6 / 59

History

January/2002:
Early discussions of wanting to port D to Linux began.

April/2002:
Walter Bright releases D Front End sources.

May/2002:
Birth of D.gnu Mailing List and BrightD Compiler Project.

June/2002:
OpenD Compiler Project announced.

Iain Bucław (@ibuclaw) (slide 6) DConf 2013 6 / 59

History

August/2002:
D Linux (DLI) released.

May/2003:
Walter Ports DMD to Linux.

February/2004:
GDMD Compiler Released.

March/2004:
DGCC Compiler Released.

Iain Bucław (@ibuclaw) (slide 7) DConf 2013 7 / 59

History

August/2002:
D Linux (DLI) released.

May/2003:
Walter Ports DMD to Linux.

February/2004:
GDMD Compiler Released.

March/2004:
DGCC Compiler Released.

Iain Bucław (@ibuclaw) (slide 7) DConf 2013 7 / 59

History

August/2002:
D Linux (DLI) released.

May/2003:
Walter Ports DMD to Linux.

February/2004:
GDMD Compiler Released.

March/2004:
DGCC Compiler Released.

Iain Bucław (@ibuclaw) (slide 7) DConf 2013 7 / 59

History

August/2002:
D Linux (DLI) released.

May/2003:
Walter Ports DMD to Linux.

February/2004:
GDMD Compiler Released.

March/2004:
DGCC Compiler Released.

Iain Bucław (@ibuclaw) (slide 7) DConf 2013 7 / 59

History

September/2007:
New Development of an LLVM D Compiler.

June/2008:
DGCC Development Abandoned.

September/2009:
GDC Revival Project Kicks Off.

December/2009:
Enter Your Humble Speaker.

Iain Bucław (@ibuclaw) (slide 8) DConf 2013 8 / 59

History

September/2007:
New Development of an LLVM D Compiler.

June/2008:
DGCC Development Abandoned.

September/2009:
GDC Revival Project Kicks Off.

December/2009:
Enter Your Humble Speaker.

Iain Bucław (@ibuclaw) (slide 8) DConf 2013 8 / 59

History

September/2007:
New Development of an LLVM D Compiler.

June/2008:
DGCC Development Abandoned.

September/2009:
GDC Revival Project Kicks Off.

December/2009:
Enter Your Humble Speaker.

Iain Bucław (@ibuclaw) (slide 8) DConf 2013 8 / 59

History

September/2007:
New Development of an LLVM D Compiler.

June/2008:
DGCC Development Abandoned.

September/2009:
GDC Revival Project Kicks Off.

December/2009:
Enter Your Humble Speaker.

Iain Bucław (@ibuclaw) (slide 8) DConf 2013 8 / 59

End of Life for D1?

November/2011:
LDC D2 Compiler becomes default version that is built.

December/2011:
D1 discontinued support starting from 2013.

January/2012:
GDC drops D1 Front End from development.

Iain Bucław (@ibuclaw) (slide 9) DConf 2013 9 / 59

End of Life for D1?

November/2011:
LDC D2 Compiler becomes default version that is built.

December/2011:
D1 discontinued support starting from 2013.

January/2012:
GDC drops D1 Front End from development.

Iain Bucław (@ibuclaw) (slide 9) DConf 2013 9 / 59

End of Life for D1?

November/2011:
LDC D2 Compiler becomes default version that is built.

December/2011:
D1 discontinued support starting from 2013.

January/2012:
GDC drops D1 Front End from development.

Iain Bucław (@ibuclaw) (slide 9) DConf 2013 9 / 59

Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59

Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59

Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59

Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59

Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59

Current GDC Support Status.

Iain Bucław (@ibuclaw) (slide 11) DConf 2013 11 / 59

GDC: Language Support

D Front End 2.062.

Passes 95% on D2 Testsuite.

Work being done on passing D Runtime/Phobos Unittests.

Iain Bucław (@ibuclaw) (slide 12) DConf 2013 12 / 59

GDC: Target Support

x86/x86_64: Solid support.

ARM: Partial support.

MIPS: Partial support.

Others: Untested / No runtime support.

Iain Bucław (@ibuclaw) (slide 13) DConf 2013 13 / 59

GDC: Platform Support

GNU/Linux: Main support platform.

FreeBSD/OpenBSD: Support should be there.

OSX: Lacks TLS Support.

Windows/MinGW: Alpha quality release available.

Iain Bucław (@ibuclaw) (slide 14) DConf 2013 14 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.

Iain Bucław (@ibuclaw) (slide 15) DConf 2013 15 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.

Iain Bucław (@ibuclaw) (slide 16) DConf 2013 16 / 59

The Anatomy of a GCC Front End.

Iain Bucław (@ibuclaw) (slide 17) DConf 2013 17 / 59

Why GCC?

The entry barrier to GCC development has gotten considerably lower
during the last few years.

With work on documentation and separation of internal modules,
writing your own front end for GCC has become accessible to a wider
community of developers.

Iain Bucław (@ibuclaw) (slide 18) DConf 2013 18 / 59

Introduction to GCC

Able to translate from a variety of source languages to assembly.

Encapsulated into one command.

Front end is made up of two main components.

Iain Bucław (@ibuclaw) (slide 19) DConf 2013 19 / 59

Introduction to GCC

Able to translate from a variety of source languages to assembly.

Encapsulated into one command.

Front end is made up of two main components.

Iain Bucław (@ibuclaw) (slide 19) DConf 2013 19 / 59

Introduction to GCC

Able to translate from a variety of source languages to assembly.

Encapsulated into one command.

Front end is made up of two main components.

Iain Bucław (@ibuclaw) (slide 19) DConf 2013 19 / 59

Compilation Driver

User interfacing application.

Knows about all supported languages.

Able to determine source language.

Passes output between compiler and assembler.

Iain Bucław (@ibuclaw) (slide 20) DConf 2013 20 / 59

Compilation Driver

User interfacing application.

Knows about all supported languages.

Able to determine source language.

Passes output between compiler and assembler.

Iain Bucław (@ibuclaw) (slide 20) DConf 2013 20 / 59

Compilation Driver

User interfacing application.

Knows about all supported languages.

Able to determine source language.

Passes output between compiler and assembler.

Iain Bucław (@ibuclaw) (slide 20) DConf 2013 20 / 59

Compilation Driver

User interfacing application.

Knows about all supported languages.

Able to determine source language.

Passes output between compiler and assembler.

Iain Bucław (@ibuclaw) (slide 20) DConf 2013 20 / 59

Compiler Proper

One compiler proper for each language.

Composed from three components.

Iain Bucław (@ibuclaw) (slide 21) DConf 2013 21 / 59

Compiler Proper

One compiler proper for each language.

Composed from three components.

Iain Bucław (@ibuclaw) (slide 21) DConf 2013 21 / 59

Front End, Middle End and Back End

The Front End contains all the language processing logic.

The Middle End is the platform independent part of the compiler.

The Back End is then the platform dependent part.

Iain Bucław (@ibuclaw) (slide 22) DConf 2013 22 / 59

Front End, Middle End and Back End

The Front End contains all the language processing logic.

The Middle End is the platform independent part of the compiler.

The Back End is then the platform dependent part.

Iain Bucław (@ibuclaw) (slide 22) DConf 2013 22 / 59

Front End, Middle End and Back End

The Front End contains all the language processing logic.

The Middle End is the platform independent part of the compiler.

The Back End is then the platform dependent part.

Iain Bucław (@ibuclaw) (slide 22) DConf 2013 22 / 59

GENERIC

GENERIC is a tree language.

Mechanism to define own node types.

Supports everything there is to represent in a typical C function.

During the course of compilation, it is lowered into an intermediate
code called GIMPLE.

Iain Bucław (@ibuclaw) (slide 23) DConf 2013 23 / 59

GENERIC

GENERIC is a tree language.

Mechanism to define own node types.

Supports everything there is to represent in a typical C function.

During the course of compilation, it is lowered into an intermediate
code called GIMPLE.

Iain Bucław (@ibuclaw) (slide 23) DConf 2013 23 / 59

GENERIC

GENERIC is a tree language.

Mechanism to define own node types.

Supports everything there is to represent in a typical C function.

During the course of compilation, it is lowered into an intermediate
code called GIMPLE.

Iain Bucław (@ibuclaw) (slide 23) DConf 2013 23 / 59

GENERIC

GENERIC is a tree language.

Mechanism to define own node types.

Supports everything there is to represent in a typical C function.

During the course of compilation, it is lowered into an intermediate
code called GIMPLE.

Iain Bucław (@ibuclaw) (slide 23) DConf 2013 23 / 59

GIMPLE

GIMPLE is a subset of GENERIC.

Breaks down all expressions, using temporaries to store intermediate
results.

Further transforms all blocks into gotos and labels.

Lowered down to RTL, or Register Transfer Language.

Iain Bucław (@ibuclaw) (slide 24) DConf 2013 24 / 59

GIMPLE

GIMPLE is a subset of GENERIC.

Breaks down all expressions, using temporaries to store intermediate
results.

Further transforms all blocks into gotos and labels.

Lowered down to RTL, or Register Transfer Language.

Iain Bucław (@ibuclaw) (slide 24) DConf 2013 24 / 59

GIMPLE

GIMPLE is a subset of GENERIC.

Breaks down all expressions, using temporaries to store intermediate
results.

Further transforms all blocks into gotos and labels.

Lowered down to RTL, or Register Transfer Language.

Iain Bucław (@ibuclaw) (slide 24) DConf 2013 24 / 59

GIMPLE

GIMPLE is a subset of GENERIC.

Breaks down all expressions, using temporaries to store intermediate
results.

Further transforms all blocks into gotos and labels.

Lowered down to RTL, or Register Transfer Language.

Iain Bucław (@ibuclaw) (slide 24) DConf 2013 24 / 59

Interfacing with D Front-End

GDC initialises the D Front-End, sets up all global parameters.

D Front-End parses and runs semantic on the code.

GDC generates GENERIC to be sent to backend.

GCC backend compiles down to RTL.

Iain Bucław (@ibuclaw) (slide 25) DConf 2013 25 / 59

Interfacing with D Front-End

GDC initialises the D Front-End, sets up all global parameters.

D Front-End parses and runs semantic on the code.

GDC generates GENERIC to be sent to backend.

GCC backend compiles down to RTL.

Iain Bucław (@ibuclaw) (slide 25) DConf 2013 25 / 59

Interfacing with D Front-End

GDC initialises the D Front-End, sets up all global parameters.

D Front-End parses and runs semantic on the code.

GDC generates GENERIC to be sent to backend.

GCC backend compiles down to RTL.

Iain Bucław (@ibuclaw) (slide 25) DConf 2013 25 / 59

Interfacing with D Front-End

GDC initialises the D Front-End, sets up all global parameters.

D Front-End parses and runs semantic on the code.

GDC generates GENERIC to be sent to backend.

GCC backend compiles down to RTL.

Iain Bucław (@ibuclaw) (slide 25) DConf 2013 25 / 59

A Simple D Program

module demo;

int add(int a, int b)
{

return a + b;
}

Iain Bucław (@ibuclaw) (slide 26) DConf 2013 26 / 59

Code Generated in GENERIC

demo.add (int a, int b)
{

return <retval> = a + b;
}

demo.add (int a, int b)
bind_expr (

return_expr (
init_expr (<retval>, plus_expr (a, b))

)
)

Iain Bucław (@ibuclaw) (slide 27) DConf 2013 27 / 59

Representation after Gimplification

demo.add (int a, int b)
{

int vartmp0;
vartmp0 = a + b;
return vartmp0;

}

demo.add (int a, int b)
gimple_bind (

int vartmp0;
gimple_assign (plus_expr, vartmp0, a, b)
gimple_return (vartmp0)

)

Iain Bucław (@ibuclaw) (slide 28) DConf 2013 28 / 59

A More Interesting D Program

module demo;

long fib (uint m)
{

return (m < 2) ? m : fib (m - 1) + fib (m - 2);
}

Iain Bucław (@ibuclaw) (slide 29) DConf 2013 29 / 59

Code Generated in GENERIC

demo.fib(uint m)
{

return <retval> = m <= 1 ? (long) m : demo.fib (m - 1) + demo.fib (m - 2);
}

demo.fib(uint m)
bind_expr (

return_expr (
init_expr (<retval>,

cond_expr (le_expr, m, 1,
nop_expr (m),
plus_expr (call_expr (demo.fib, minus_expr (m, 1)),

call_expr (demo.fib, minus_expr (m, 2)))
)

)
)

)

Iain Bucław (@ibuclaw) (slide 30) DConf 2013 30 / 59

Representation after Gimplification

demo.fib (uint m)
{

long vartmp0;
long iftmp0;
uint vartmp1;
long vartmp2;
uint vartmp3;
long vartmp4;
if (m <= 1) goto L1; else goto L2;
L1:
iftmp0 = (long) m;
goto L3;
L2:
vartmp1 = m + 4294967295;
vartmp2 = demo.fib (vartmp1);
vartmp3 = m + 4294967294;
vartmp4 = demo.fib (vartmp3);
iftmp0 = vartmp2 + vartmp4;
L3:
vartmp0 = iftmp0;
return vartmp0;

}

Iain Bucław (@ibuclaw) (slide 31) DConf 2013 31 / 59

Notation Representation

demo.fib (uint m)
gimple_bind (

long vartmp0;
uint vartmp1;
long vartmp2;
uint vartmp3;
long vartmp4;
long iftmp0;
gimple_cond (le_expr, m, 1, (L1), (L2))
gimple_label (L1)
gimple_assign (nop_expr, iftmp0, m)
gimple_goto (L3)
gimple_label (L2)
gimple_assign (plus_expr, vartmp1, m, 4294967295)
gimple_call (demo.fib, vartmp2, vartmp1)
gimple_assign (plus_expr, vartmp3, m, 4294967294)
gimple_call (demo.fib, vartmp4, vartmp3)
gimple_assign (plus_expr, iftmp0, vartmp2, vartmp4)
gimple_label (L3)
gimple_assign (var_decl, vartmp0, iftmp0)
gimple_return (vartmp0)

)

Iain Bucław (@ibuclaw) (slide 32) DConf 2013 32 / 59

GDC Extensions

Iain Bucław (@ibuclaw) (slide 33) DConf 2013 33 / 59

Custom Static Chains

Generated for all nested functions
Generated for toplevel functions with nested references.

int delegate() foo()
{

int x = 7;

int bar()
{

int baz()
{

return x + 3;
}
return baz();

}
return &bar;

}

Iain Bucław (@ibuclaw) (slide 34) DConf 2013 34 / 59

Generated GENERIC Code

closure.foo.bar.baz (void *this)
{

return <retval> = ((CLOSURE.closure.foo *) this)->x + 3;
}

closure.foo.bar (void *this)
{

return <retval> = closure.foo.bar.baz ((CLOSURE.closure.foo *) this);
}

closure.foo (void *this)
{

int x [value-expr: (__closptr)->x];
struct CLOSURE.closure.foo *__closptr;

__closptr = (CLOSURE.closure.foo *) _d_allocmemory (8);
__closptr->__chain = 0B;
__closptr->x = 7;
return <retval> = {.object=__closptr, .func=closure.foo.bar};

}

Iain Bucław (@ibuclaw) (slide 35) DConf 2013 35 / 59

Function Frames

Where a closure is not required, a frame is instead generated.

void bar()
{

int add = 2;
scope dg = (int a) => a + add;
assert(dg(5) == 7);

}

Iain Bucław (@ibuclaw) (slide 36) DConf 2013 36 / 59

Generated GENERIC Code

frame.bar.__lambda1 (void *this)
{

return <retval> = a + ((FRAME.frame.bar *) this)->add;
}

frame.bar ()
{

struct dg;
int add [value-expr: (&__frame)->add];
struct FRAME.frame.bar __frame;

__frame.__chain = 0B;
(&__frame)->add = 2;
dg = {.object=&__frame, .func=frame.bar.__lambda1};
if (dg.func (dg.object, 5) == 7)
{

0
}
else
{

_d_assert ({.length=6, .ptr="test.d"}, 7);
}

}

Iain Bucław (@ibuclaw) (slide 37) DConf 2013 37 / 59

GCC Built-in Functions and Types

gcc.builtins gives access to built-ins provided by the GCC backend.

import gcc.builtins;

void test()
{

real r = 0.5 * __builtin_sqrtl(real.min_normal);

if (__builtin_expect (cast(long) r == 0, true))
__builtin_printf("Hello World!\n");

}

Iain Bucław (@ibuclaw) (slide 38) DConf 2013 38 / 59

Generated GENERIC Code

Allows many C library calls to be optimised in certain cases.

builtins.test ()
{

real r;

r = 9.16801933777423582810706196024241582978182485679283618642e-2467;
{

if (__builtin_expect ((long) r == 0, 1) != 0)
{

__builtin_puts ("Hello World!");
}

}
}

Iain Bucław (@ibuclaw) (slide 39) DConf 2013 39 / 59

Built-in Types

Defines aliases to internal types.

__builtin_va_list; // Target C va_list type.
__builtin_clong; // Target C long int type.
__builtin_culong; // Target C long unsigned int type.
__builtin_machine_byte; // Signed type whose size is equal to sizeof(unit).
__builtin_machine_ubyte; // Unsigned variant.
__builtin_machine_int; // Signed type whose size is equal to sizeof(word).
__builtin_machine_uint; // Unsigned variant.
__builtin_pointer_int; // Signed type whose size is equal to sizeof(pointer).
__builtin_pointer_uint; // Unsigned variant.
__builtin_unwind_int; // Target C _Unwind_Sword type, for EH.
__builtin_unwind_uint; // Target C _Unwind_Word type, for EH.

Iain Bucław (@ibuclaw) (slide 40) DConf 2013 40 / 59

Implementing D Intrinsics

DMD has several intrinsics to the compiler.

import core.bitop;
import core.math;

void main()
{

long l;
l = rndtol (4.5);

size_t[2] a = [2, 256];
btc(a.ptr, 35);

}

Iain Bucław (@ibuclaw) (slide 41) DConf 2013 41 / 59

Generated GENERIC Code

core.math intrinsics are mapped to GCC builtin-ins.
core.bitop instrinsics are expanded with inlined generated code.

int D main()
{

int D.2001;
ulong a[2];
long l;

l = 0;
l = (long) __builtin_llroundl (4.5e+0);

a[0] = 2;
a[1] = 256;
D.2001 = (*(ulong *) &a & 34359738368) != 0 ? -1 : 0;
*(ulong *) &a = *(ulong *) &a ^ 34359738368;

return <retval> = 0;
}

Iain Bucław (@ibuclaw) (slide 42) DConf 2013 42 / 59

Extending D Intrinsics

Many functions defined in core.stdc are mapped to GCC built-ins.

Functions recognised as a GCC built-in can be optimised.

Can be turned off with -fno-builtin switch.

Iain Bucław (@ibuclaw) (slide 43) DConf 2013 43 / 59

import core.stdc.stdio;
import core.stdc.math;

void test()
{

real r = powl(3, 3);

if (r == 27.0)
printf("Match!\n");

}

intrinsic.test()
{

real r;

r = 2.7e+1;
{

if (r == 2.7e+1)
{

__builtin_puts ("Match!");
}

}
}

Iain Bucław (@ibuclaw) (slide 44) DConf 2013 44 / 59

Variadic Functions

The va_list type has an exclusive meaning in the compiler.

Matches the C ABI, type is not a void*.

Defined in gcc.builtins, then an alias to the type in core.stdc.stdarg.

Special va functions expanded at compile-time.

Iain Bucław (@ibuclaw) (slide 45) DConf 2013 45 / 59

Variadic Functions

import core.stdc.stdarg;

void variadic(...)
{

auto a1 = va_arg!(int)(_argptr);
auto a2 = va_arg!(double)(_argptr);
auto a3 = va_arg!(int[2])(_argptr);
auto a4 = va_arg!(string)(_argptr);

}

Iain Bucław (@ibuclaw) (slide 46) DConf 2013 46 / 59

Generated GENERIC Code

valist.variadic (struct TypeInfo_Tuple & _arguments_typeinfo)
{

struct _argptr[1];
struct a4;
int a3[2];
double a2;
int a1;
struct _arguments;

__builtin_va_start (&_argptr, _arguments_typeinfo);
try

{
_arguments = _arguments_typeinfo->elements;
a1 = VA_ARG_EXPR <_argptr>;
a2 = VA_ARG_EXPR <_argptr>;
a3 = VA_ARG_EXPR <_argptr>;
a4 = VA_ARG_EXPR <_argptr>;

}
finally

{
__builtin_va_end (&_argptr);

}
}

Iain Bucław (@ibuclaw) (slide 47) DConf 2013 47 / 59

GCC Attributes

Used to be accessible via pragmas in the language.

Now uses UDA syntax that gets handled by gcc.attributes.

import gcc.attributes;
import gcc.builtins;

@attribute("noreturn")
void die()
{

__builtin_unreachable();
}

Iain Bucław (@ibuclaw) (slide 48) DConf 2013 48 / 59

GCC Type Attributes

Attributes can also be applied to types.

import gcc.attributes;

@attribute("aligned")
struct A
{

char c;
int i;

}

@attribute("unused") int unused_var;

As of writing, none of these attributes are implemented in GDC.

Iain Bucław (@ibuclaw) (slide 49) DConf 2013 49 / 59

GCC Extended Assembly

GDC implements a variant of GCC Extended Assembly.

Extended assembly allows you to optionally specify the operands.

asm {
"rdtsc"
: /* output operands */
: /* input operands */
: /* list of clobbered registers */ ;

}

Iain Bucław (@ibuclaw) (slide 50) DConf 2013 50 / 59

Benefits of Extended Assembly

It is available on nearly all targets.

Instruction templates can be generated through CTFE string
constants.

Does not prevent a function from being inlined.

Can have some common optimisations applied to them, such as DCE.

Iain Bucław (@ibuclaw) (slide 51) DConf 2013 51 / 59

Future Plans

Iain Bucław (@ibuclaw) (slide 52) DConf 2013 52 / 59

Compiler: Short Term

Removing last of DMD-backend facing code from DFE.

Find a workable solution for TLS support.

Better support for LTO.

Iain Bucław (@ibuclaw) (slide 53) DConf 2013 53 / 59

Compiler: Short Term

Removing last of DMD-backend facing code from DFE.

Find a workable solution for TLS support.

Better support for LTO.

Iain Bucław (@ibuclaw) (slide 53) DConf 2013 53 / 59

Compiler: Short Term

Removing last of DMD-backend facing code from DFE.

Find a workable solution for TLS support.

Better support for LTO.

Iain Bucław (@ibuclaw) (slide 53) DConf 2013 53 / 59

Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.

Iain Bucław (@ibuclaw) (slide 54) DConf 2013 54 / 59

Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.

Iain Bucław (@ibuclaw) (slide 54) DConf 2013 54 / 59

Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.

Iain Bucław (@ibuclaw) (slide 54) DConf 2013 54 / 59

Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.

Iain Bucław (@ibuclaw) (slide 54) DConf 2013 54 / 59

Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.

Iain Bucław (@ibuclaw) (slide 54) DConf 2013 54 / 59

Compiler: Wishlist

Add support for label operands in Extended Assembly.

int frob(int x)
{

int y;
asm {

"frob %%r5, %1;
jc %l[Lerror];
mov (%2), %%r5"

:
: "r"(x), "r"(&y)
: "r5", "memory"
: Lerror;

}
return y;

Lerror:
return -1;

}

Iain Bucław (@ibuclaw) (slide 55) DConf 2013 55 / 59

Library

Implement Exception Chaining.

Conversion of D IASM to Extended Assembly.

Finish off port of ARM.

Fix D GC runtime for TLS support.

Iain Bucław (@ibuclaw) (slide 56) DConf 2013 56 / 59

Library

Implement Exception Chaining.

Conversion of D IASM to Extended Assembly.

Finish off port of ARM.

Fix D GC runtime for TLS support.

Iain Bucław (@ibuclaw) (slide 56) DConf 2013 56 / 59

Library

Implement Exception Chaining.

Conversion of D IASM to Extended Assembly.

Finish off port of ARM.

Fix D GC runtime for TLS support.

Iain Bucław (@ibuclaw) (slide 56) DConf 2013 56 / 59

Library

Implement Exception Chaining.

Conversion of D IASM to Extended Assembly.

Finish off port of ARM.

Fix D GC runtime for TLS support.

Iain Bucław (@ibuclaw) (slide 56) DConf 2013 56 / 59

It is vital that we begin testing on, and gain support for more
target architectures and platforms.

Iain Bucław (@ibuclaw) (slide 57) DConf 2013 57 / 59

http://gdcproject.org

http://gdcproject.org/wiki

http://bugzilla.gdcproject.org

ibuclaw@gdcproject.org

Iain Bucław (@ibuclaw) (slide 58) DConf 2013 58 / 59

Questions?

Iain Bucław (@ibuclaw) (slide 59) DConf 2013 59 / 59

	History of Porting D Front End (DFE)
	GDC Current Status
	The Anatomy of a GCC Front End
	GDC Extensions
	Future Plans

