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What is GCC?

Developed to be 100% free software.

Solid support for multiple language.

Ported to almost all architectures.
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That and because the Clang/LLVM compiler was not to appear
for another 5 years...
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A Short History of Porting the D Front End.
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History

January/2002:
Early discussions of wanting to port D to Linux began.

April/2002:
Walter Bright releases D Front End sources.

May/2002:
Birth of D.gnu Mailing List and BrightD Compiler Project.

June/2002:
OpenD Compiler Project announced.
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History

August/2002:
D Linux (DLI) released.

May/2003:
Walter Ports DMD to Linux.

February/2004:
GDMD Compiler Released.

March/2004:
DGCC Compiler Released.
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History

September/2007:
New Development of an LLVM D Compiler.

June/2008:
DGCC Development Abandoned.

September/2009:
GDC Revival Project Kicks Off.

December/2009:
Enter Your Humble Speaker.
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End of Life for D1?

November/2011:
LDC D2 Compiler becomes default version that is built.

December/2011:
D1 discontinued support starting from 2013.

January/2012:
GDC drops D1 Front End from development.
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Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59



Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59



Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59



Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59



Current State of D2 Compiler

Three main compilers based off the D2 Front End.

Platform support for Linux, FreeBSD, OSX, Solaris, and Windows.

Target support for ARM, PowerPC, x86, x86_64.

D Runtime gaining support for more targets.

Phobos becoming platform agnostic.

Iain Bucław (@ibuclaw) (slide 10) DConf 2013 10 / 59



Current GDC Support Status.
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GDC: Language Support

D Front End 2.062.

Passes 95% on D2 Testsuite.

Work being done on passing D Runtime/Phobos Unittests.
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GDC: Target Support

x86/x86_64: Solid support.

ARM: Partial support.

MIPS: Partial support.

Others: Untested / No runtime support.

Iain Bucław (@ibuclaw) (slide 13) DConf 2013 13 / 59



GDC: Platform Support

GNU/Linux: Main support platform.

FreeBSD/OpenBSD: Support should be there.

OSX: Lacks TLS Support.

Windows/MinGW: Alpha quality release available.
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GDC: To Hell With DMD Compatibility.

GDC follows the D calling convention as per the spec.
Except for Win32, which defines the D calling convention.
Uses thiscall convention for methods.

No D Inline Assembly implemented.

No naked function support.

Type va_list matches C ABI.
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GDC: To Hell With DMD Compatibility.

No __simd support.
Allow __vector sizes of 8, 16 or 32 bytes.
No current restrictions on what targets can use __vector.

gcov and gprof replace -cov and -profile.

gdmd script maintained separately.

No support for D DWARF extensions.
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The Anatomy of a GCC Front End.
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Why GCC?

The entry barrier to GCC development has gotten considerably lower
during the last few years.

With work on documentation and separation of internal modules,
writing your own front end for GCC has become accessible to a wider
community of developers.
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Introduction to GCC

Able to translate from a variety of source languages to assembly.

Encapsulated into one command.

Front end is made up of two main components.
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Compilation Driver

User interfacing application.

Knows about all supported languages.

Able to determine source language.

Passes output between compiler and assembler.
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Compiler Proper

One compiler proper for each language.

Composed from three components.
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Front End, Middle End and Back End

The Front End contains all the language processing logic.

The Middle End is the platform independent part of the compiler.

The Back End is then the platform dependent part.
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GENERIC

GENERIC is a tree language.

Mechanism to define own node types.

Supports everything there is to represent in a typical C function.

During the course of compilation, it is lowered into an intermediate
code called GIMPLE.
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GIMPLE

GIMPLE is a subset of GENERIC.

Breaks down all expressions, using temporaries to store intermediate
results.

Further transforms all blocks into gotos and labels.

Lowered down to RTL, or Register Transfer Language.
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Interfacing with D Front-End

GDC initialises the D Front-End, sets up all global parameters.

D Front-End parses and runs semantic on the code.

GDC generates GENERIC to be sent to backend.

GCC backend compiles down to RTL.
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A Simple D Program

module demo;

int add(int a, int b)
{

return a + b;
}
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Code Generated in GENERIC

demo.add (int a, int b)
{

return <retval> = a + b;
}

demo.add (int a, int b)
bind_expr (

return_expr (
init_expr (<retval>, plus_expr (a, b))

)
)
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Representation after Gimplification

demo.add (int a, int b)
{

int vartmp0;
vartmp0 = a + b;
return vartmp0;

}

demo.add (int a, int b)
gimple_bind (

int vartmp0;
gimple_assign (plus_expr, vartmp0, a, b)
gimple_return (vartmp0)

)
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A More Interesting D Program

module demo;

long fib (uint m)
{

return (m < 2) ? m : fib (m - 1) + fib (m - 2);
}
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Code Generated in GENERIC

demo.fib(uint m)
{

return <retval> = m <= 1 ? (long) m : demo.fib (m - 1) + demo.fib (m - 2);
}

demo.fib(uint m)
bind_expr (

return_expr (
init_expr (<retval>,

cond_expr (le_expr, m, 1,
nop_expr (m),
plus_expr (call_expr (demo.fib, minus_expr (m, 1)),

call_expr (demo.fib, minus_expr (m, 2)))
)

)
)

)
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Representation after Gimplification

demo.fib (uint m)
{

long vartmp0;
long iftmp0;
uint vartmp1;
long vartmp2;
uint vartmp3;
long vartmp4;
if (m <= 1) goto L1; else goto L2;
L1:
iftmp0 = (long) m;
goto L3;
L2:
vartmp1 = m + 4294967295;
vartmp2 = demo.fib (vartmp1);
vartmp3 = m + 4294967294;
vartmp4 = demo.fib (vartmp3);
iftmp0 = vartmp2 + vartmp4;
L3:
vartmp0 = iftmp0;
return vartmp0;

}

Iain Bucław (@ibuclaw) (slide 31) DConf 2013 31 / 59



Notation Representation

demo.fib (uint m)
gimple_bind (

long vartmp0;
uint vartmp1;
long vartmp2;
uint vartmp3;
long vartmp4;
long iftmp0;
gimple_cond (le_expr, m, 1, (L1), (L2))
gimple_label (L1)
gimple_assign (nop_expr, iftmp0, m)
gimple_goto (L3)
gimple_label (L2)
gimple_assign (plus_expr, vartmp1, m, 4294967295)
gimple_call (demo.fib, vartmp2, vartmp1)
gimple_assign (plus_expr, vartmp3, m, 4294967294)
gimple_call (demo.fib, vartmp4, vartmp3)
gimple_assign (plus_expr, iftmp0, vartmp2, vartmp4)
gimple_label (L3)
gimple_assign (var_decl, vartmp0, iftmp0)
gimple_return (vartmp0)

)
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GDC Extensions
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Custom Static Chains

Generated for all nested functions
Generated for toplevel functions with nested references.

int delegate() foo()
{

int x = 7;

int bar()
{

int baz()
{

return x + 3;
}
return baz();

}
return &bar;

}
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Generated GENERIC Code

closure.foo.bar.baz (void *this)
{

return <retval> = ((CLOSURE.closure.foo *) this)->x + 3;
}

closure.foo.bar (void *this)
{

return <retval> = closure.foo.bar.baz ((CLOSURE.closure.foo *) this);
}

closure.foo (void *this)
{

int x [value-expr: (__closptr)->x];
struct CLOSURE.closure.foo *__closptr;

__closptr = (CLOSURE.closure.foo *) _d_allocmemory (8);
__closptr->__chain = 0B;
__closptr->x = 7;
return <retval> = {.object=__closptr, .func=closure.foo.bar};

}
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Function Frames

Where a closure is not required, a frame is instead generated.

void bar()
{

int add = 2;
scope dg = (int a) => a + add;
assert(dg(5) == 7);

}
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Generated GENERIC Code

frame.bar.__lambda1 (void *this)
{

return <retval> = a + ((FRAME.frame.bar *) this)->add;
}

frame.bar ()
{

struct dg;
int add [value-expr: (&__frame)->add];
struct FRAME.frame.bar __frame;

__frame.__chain = 0B;
(&__frame)->add = 2;
dg = {.object=&__frame, .func=frame.bar.__lambda1};
if (dg.func (dg.object, 5) == 7)
{

0
}
else
{

_d_assert ({.length=6, .ptr="test.d"}, 7);
}

}
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GCC Built-in Functions and Types

gcc.builtins gives access to built-ins provided by the GCC backend.

import gcc.builtins;

void test()
{

real r = 0.5 * __builtin_sqrtl(real.min_normal);

if (__builtin_expect (cast(long) r == 0, true))
__builtin_printf("Hello World!\n");

}

Iain Bucław (@ibuclaw) (slide 38) DConf 2013 38 / 59



Generated GENERIC Code

Allows many C library calls to be optimised in certain cases.

builtins.test ()
{

real r;

r = 9.16801933777423582810706196024241582978182485679283618642e-2467;
{

if (__builtin_expect ((long) r == 0, 1) != 0)
{

__builtin_puts ("Hello World!");
}

}
}
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Built-in Types

Defines aliases to internal types.

__builtin_va_list; // Target C va_list type.
__builtin_clong; // Target C long int type.
__builtin_culong; // Target C long unsigned int type.
__builtin_machine_byte; // Signed type whose size is equal to sizeof(unit).
__builtin_machine_ubyte; // Unsigned variant.
__builtin_machine_int; // Signed type whose size is equal to sizeof(word).
__builtin_machine_uint; // Unsigned variant.
__builtin_pointer_int; // Signed type whose size is equal to sizeof(pointer).
__builtin_pointer_uint; // Unsigned variant.
__builtin_unwind_int; // Target C _Unwind_Sword type, for EH.
__builtin_unwind_uint; // Target C _Unwind_Word type, for EH.
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Implementing D Intrinsics

DMD has several intrinsics to the compiler.

import core.bitop;
import core.math;

void main()
{

long l;
l = rndtol (4.5);

size_t[2] a = [2, 256];
btc(a.ptr, 35);

}
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Generated GENERIC Code

core.math intrinsics are mapped to GCC builtin-ins.
core.bitop instrinsics are expanded with inlined generated code.

int D main()
{

int D.2001;
ulong a[2];
long l;

l = 0;
l = (long) __builtin_llroundl (4.5e+0);

a[0] = 2;
a[1] = 256;
D.2001 = (*(ulong *) &a & 34359738368) != 0 ? -1 : 0;
*(ulong *) &a = *(ulong *) &a ^ 34359738368;

return <retval> = 0;
}
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Extending D Intrinsics

Many functions defined in core.stdc are mapped to GCC built-ins.

Functions recognised as a GCC built-in can be optimised.

Can be turned off with -fno-builtin switch.
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import core.stdc.stdio;
import core.stdc.math;

void test()
{

real r = powl(3, 3);

if (r == 27.0)
printf("Match!\n");

}

intrinsic.test()
{

real r;

r = 2.7e+1;
{

if (r == 2.7e+1)
{

__builtin_puts ("Match!");
}

}
}
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Variadic Functions

The va_list type has an exclusive meaning in the compiler.

Matches the C ABI, type is not a void*.

Defined in gcc.builtins, then an alias to the type in core.stdc.stdarg.

Special va functions expanded at compile-time.
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Variadic Functions

import core.stdc.stdarg;

void variadic(...)
{

auto a1 = va_arg!(int)(_argptr);
auto a2 = va_arg!(double)(_argptr);
auto a3 = va_arg!(int[2])(_argptr);
auto a4 = va_arg!(string)(_argptr);

}
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Generated GENERIC Code

valist.variadic (struct TypeInfo_Tuple & _arguments_typeinfo)
{

struct _argptr[1];
struct a4;
int a3[2];
double a2;
int a1;
struct _arguments;

__builtin_va_start (&_argptr, _arguments_typeinfo);
try

{
_arguments = _arguments_typeinfo->elements;
a1 = VA_ARG_EXPR <_argptr>;
a2 = VA_ARG_EXPR <_argptr>;
a3 = VA_ARG_EXPR <_argptr>;
a4 = VA_ARG_EXPR <_argptr>;

}
finally

{
__builtin_va_end (&_argptr);

}
}
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GCC Attributes

Used to be accessible via pragmas in the language.

Now uses UDA syntax that gets handled by gcc.attributes.

import gcc.attributes;
import gcc.builtins;

@attribute("noreturn")
void die()
{

__builtin_unreachable();
}
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GCC Type Attributes

Attributes can also be applied to types.

import gcc.attributes;

@attribute("aligned")
struct A
{

char c;
int i;

}

@attribute("unused") int unused_var;

As of writing, none of these attributes are implemented in GDC.
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GCC Extended Assembly

GDC implements a variant of GCC Extended Assembly.

Extended assembly allows you to optionally specify the operands.

asm {
"rdtsc"
: /* output operands */
: /* input operands */
: /* list of clobbered registers */ ;

}
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Benefits of Extended Assembly

It is available on nearly all targets.

Instruction templates can be generated through CTFE string
constants.

Does not prevent a function from being inlined.

Can have some common optimisations applied to them, such as DCE.
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Future Plans
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Compiler: Short Term

Removing last of DMD-backend facing code from DFE.

Find a workable solution for TLS support.

Better support for LTO.
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Compiler: Long Term

Kickstart testing of more targets with D2.

Implement missing optimisation features of D.
Named return value optimisation.
POD struct types.

Integration of DFE into GCC garbage collector.
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Compiler: Wishlist

Add support for label operands in Extended Assembly.

int frob(int x)
{

int y;
asm {

"frob %%r5, %1;
jc %l[Lerror];
mov (%2), %%r5"

:
: "r"(x), "r"(&y)
: "r5", "memory"
: Lerror;

}
return y;

Lerror:
return -1;

}
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Library

Implement Exception Chaining.

Conversion of D IASM to Extended Assembly.

Finish off port of ARM.

Fix D GC runtime for TLS support.
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It is vital that we begin testing on, and gain support for more
target architectures and platforms.
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http://gdcproject.org

http://gdcproject.org/wiki

http://bugzilla.gdcproject.org

ibuclaw@gdcproject.org
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Questions?
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